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1 Introduction 

Einstein described the introduction of a cosmological constant into the field equations of 
general relativity as ‘the biggest blunder of his life.’ In view of this, the idea that such a 
term might play an influential role in the history of the universe has proved remarkably pop- 
ular. Theoretical cosmologists have traditionally looked to such a term when attempting to 
reconcile theory with observation and indeed Einstein’s original motivation for considering 
a A-term was to cancel the theoretically predicted expansion of the universe (11. Some time 
later the steady-state scenario was developed to account for the apparently low age of the 
universe deduced from observations of the expansion rate [2]. In recent years the inflation- 
ary scenario has been developed in an attempt to resolve some of the puzzles of the hot big 
bang model [3]. Inflation explains why the universe appears remarkably homogeneous and 
spatially flat on large scales and why monopoles formed during phase transitions are not 
observed at the present epoch. 

During inflation the universe is dominated by the self-interaction potential energy V(4) 
of a quantum scalar field 4 and this false vacuum energy plays the role of an effective cosmo- 
logical constant for a finite time interval. This vacuum energy leads to a negative pressure 
and hence gravitational repulsion. In this scenario the matter content of the observed uni- 
verse is formed when the false vacuum decays at the end of inflation. Historically, Gliner [4] 
first realized that a positive vacuum energy density is equivalent to a cosmological constant 
and this idea was extended by Zel’dovich [5]. H owever, the idea that matter came from the 
expansion of a universe dominated by a cosmological constant can be traced to a paper by 
McVittie 161. He found that a negative pressure in general relativity can be converted into 
matter due to the expansion of the universe if the quantity p + 3p is constant, where p and 
p are the energy density and pressure of the matter sector. This quantity is approximately 
constant during inflation. 

Current estimates suggest that over 1600 papers have been published on various aspects 
of the inflationary scenario since its proposal by Guth and others in 1981 [3]. However, 
despite such extraordinary effort there remain some unresolved problems with the scenario. 
From a particle physics viewpoint one of the most pressing problems with inflation is the 
identity of the scalar field. Essentially the problem is that there are too many candidates. 
These include the Higgs bosons of grand unified theories, the extra degrees of freedom 
associated with higher metric derivatives in extensions to general relativity, a time-varying 
cosmological constant and the radius of the internal space in Kaluza-Klein theories (for a 
recent review see [7]). 

In general this scalar field is loosely referred to as the inflaton. Traditionally one chooses 
a specific model of particle physics and then compares the theoretical predictions of the 
model with observation. This enables the region of parameter space consistent with obser- 
vation to be determined. However, in view of the large number of plausible models currently 
on the market, and motivated by recent advances and results in observational cosmology, 
one might ask whether observations of large-scale structure in the universe can be employed 
to ‘reconstruct’ the particle physics and in particular the functional form of the inflationary 
potential [8-lo]. We know from the observed quadrupole anisotropy of the cosmic microwave 
background radiation (CMBR) [ll] that the final stages of the inflationary epoch occurred 
at or below the grand unified (GUT) scale and this method therefore provides a potential 



window on the physics of the early universe at scales of order 10”GcV. This corresponds 
to 10d3’s after the moment of creation. The purpose of this talk then is to review the 
reconstruction procedure and discuss whether such a suggestion is feasable. 

The different inflationary models may be classified into two main groups. Those in 
the first end via completion of a strong first-order phase transition> whilst those in the 
second end when the scalar field moves from a relatively flat region to a steeper region of 
its potential (i.e. the slow-roll to waterfall transition). In many cases first-order inflation 
models can be expressed as slow-roll models after an appropriate conformal transformation 
on the metric tensor and in this talk we shall therefore adopt the working hypothesis that 
inflation wits driven by a single, self-interacting scalar field minimally coupled to Einstein 
gravity. We further assume that the initial conditions were specified by some appropriate 
quantum theory of gravity at the Planck scale. In general this is the simplest scenario and 
we shall refer to it as basic inflation. It is certainly possible that a more complicated theory 
might be required to accurately describe the physics of the very early universe, but at this 
stage in the game we should at least attempt to rule out the simplest models first before 
considering other possibilities further. 

2 The Formation of a Primordial Power Spectrum 

In reconstruction we do not choose a particle physics model as an initial condition. Con- 
sequently we may assume nothing about the functional form of the potential ezcept that it 
leads to an epoch of infEationary expansion. To proceed, therefore, we must first consider 
how the dynamics of the scalar field can be determined in full generality. Only the last 60 
e-foldings or so of inflationary expansion have significant observational consequences and in 
a very real sense this represents the final stages of the inflationary expansion. It is therefore 
reasonable to assume that any initial anisotropies and inhomogeneities in the topology of 
the space-time have been smoothed out by this stage. For the purposes of reconstruction, 
therefore, one may assume the Friedmann-Robertson-Walker (FRW) metric. It follows that 
the energy and momentum equations for a universe dominated by the inflaton field are 

H2 = ; ($2 + V(4)) - $ 

and 

(2.2) 

where a(t) is the scale factor of the universe, H = h/a is the expansion rate, a dot denotes 
differentiation with respect to cosmic time t and 6’ z 8?rmp2, where mp is the Planck 
mass. The spatial sections of the space-time are open, flat or closed for !z = {-I, 0, +l} 
respectively and we choose units such that 5 = c = 1. 

The field equation for the scalar field represents the local conservation of energy and mo- 
mentum. It follows directly from the geometrical property that the boundary of a boundary 
is identically zero: 

4 f 3Hrj + V’(4) = 0, (2.3) 

where a prime denotes differentiation with respect to 4. The time dependence in the energy 
equation may be eliminated by rewriting the scalar field equation in terms of the energy 
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density p s $J2 + V [12]. If 4 does not pass through zero during the interval of interest 
(i.e. the field does not oscillate), Eq. (2.3) simplifies to 

p’ = -3H$. J#O. (2.4) 

The general solution to this equation is 

t= -3/‘dqbfH($‘) ($)-I (2.5) 

and implies that the inflaton field may be employed as an effective time coordinate. It 
follows that 6H2 = -p’X’/X, where X(4) E a’(4), and the energy equation reads 

p’X’ + 2n’pX = 6k. (2.6) 

The field equations reduce to the remarkably simple form 

2H’a’ = -t?Ha, 217’ = -&, (2.7) 

for k = 0 and substitution of Eq. (2.7) into Eq. (2.1) determines the potential via the 
Hamilton-Jacobi differential equation [13]: 

(2.8) 

For reasons of technical simplicity, inflation is often discussed within the context of 
the slow-roll approximation, but the Hamilton-Jacobi formalism allows the dynamics of 
the inflaton field to be investigated in full generality. Indeed, this framework has further 
applications within the context of higher-order and scalar-tensor gravity theories which are 
conformably equivalent to Einstein gravity minimally coupled to a self-interacting scalar 
field [14]. 

One may define the two parameters [15]: 

(2.9) 

(2.10) 

Module constants of proportionality e is a meaSure of in&ton’s kinetic energy relative to 
its total energy density and 7 measures the ratio of the field’s acceleration relative to the 
friction acting on it due to the expansion of the universe. We shall refer to them as the 
energy and fiction parameters respectively. The slow-roll approximation applies when the 
magnitudes of these parameters are small in comparison to unity, i.e. {e, ]q]} < 1. Inflation 
proceeds when ii > 0 and this is equivalent to the condition e < 1. It is interesting that only 
H(4) and its first derivative determine whether the strong energy condition is violated and 
in principle infIation can proceed if ]q] is very large. This is the case if the field is located 
within the vicinity of a local maximum in the potential. 

This provides us with sufficient background to determine the perturbation spectra. Let 
us briefly review how primordial fluctuations are generated during inflation [16]. Density 
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perturbations, Sp, arise after the field has rolled down the potential well. Quantum fluctua- 
tions in the field during inflation produce a time shift in how quickly the rollover occurs, thus 
producing a 1 # constant hypersurface for bp = constant. In other words, for a t = constant 
3-surface, there is a density distribution produced by the kinetic energy of the inflaton field. 

In a universe with density field p(x) and mean density po, the density contrast is defined 
as S(x) = 6p(x)/po = (p(x) - po)/m. This contrast is most conveniently expressed as a 
Fourier expansion 6(x) cx J” d3k6k exp(-ikx), where we ignore the constant of proportion- 
ality. The density perturbation on a scale X is then given by 

( > - “,” 1 0: k316A2~h=k-, 

If the strong energy condition is violated, physical length scales grow more rapidly than 
the Hubble radius H-‘, so a given scale that starts sub-Hubble radius can pass outside the 
Hubble radius during inflation and reenter after inflation during the radiation- or matter- 
dominated epochs. This implies that quantum fluctuations associated with a given length 
scale will be present when that length scale reenters the Hubble radius. The amplitude of 
this fluctuation when it reenters after inflation is given by 

mic2 H2(+) 
z :A&$) = -- 

h3/* IHWI' 
(2.12) 

where the quantities on the right-hand-side are to be evaluated when the scale X crossed 
the Hubble radius during inflation [Xl. In the uniform Hubble constant gauge the constant 
m equals 4 or 0.4 if the fluctuation reenters during the radiation- or matter-dominated era 
respectively. 

In a similar fashion quantum fluctuations in the graviton field are also redshifted beyond 
the Hubble radius during inflation. The gravitational wave (tensor) spectrum is calculated 
in the transverse-traceless gauge, where + and x denote the two independent polarization 
states of the metric perturbation. The classical amplitude of the fluctuation satisfies the 
massless Klein-Gordon equation, so the graviton behaves as a massless, minimally coupled 
scalar field with two degrees of freedom $J+,~. The spectrum of tensor tluctuations is then 
given by 

AAd) = &H(b), (2.13) 

where once again the quantities on the right-hand-side are evaluated when the scale first 
crosses the Hubble radius during inflation [17]. 

The amplitude of the scalar fluctuations at horizon crossing is related to the primordial 
power spectrum P(k) via the relationship P(k) cx A:(k)k 0: k”(‘c), where the function n(k) 
defines the spectral index. The spectral indices of both the scalar and tensor fluctuations 
may be expressed in terms of the energy and friction parameters: 

nc s dln[A$(X)]/dlnX = 2, 
I 

(2.15) 
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where * indicates that the energy and friction parameters should be evaluated when a 
particular scale first crosses the Hubble radius [9,15,18]. 

This concludes our review of scalar field dynamics and the formation of primordial power 
spectra in the very early universe. We shall now summarize the observational predictions 
generic to basic inflation and will then discuss the formalism that enables a reconstruction 
of the inflationary potential to be made, at least in principle! 

3 Observational Predictions of Basic Inflation 

Since the discovery of anisotropic structure on the CMBR there has been renewed interest in 
the possibility that observational tests of inflation might be possible within the near future. 
It is therefore constructive to summarize the most generic predictions of basic inflation. 

Prediction I: Inflation puts the ‘bang’ into the big bang. The standard hot big bang 
scenario assumes as an initial condition that the universe is expanding at some arbitrarily 
early epoch and then traces the history of the universe after that epoch. In the inflationary 
scenario, however, the gravitational repulsion of the false vacuum leads naturally to a quasi- 
exponential expansion of the scale factor and the observed Hubble expansion at the present 
epoch is therefore a prediction of all inflationary models. 

Prediction II: The density parameter R s p/pc = 8nG/3H2 measures the ratio of the 
energy density of the universe to the critical energy density at a given epoch. When the 
strong energy condition of general relativity is satisfied the energy equation (2.1) implies that 
R = 1 is an unstable equilibrium point. However during inflation the strong energy condition 
is violated and 0 approaches unity exponentially fast. Although R has been evolving away 
from unity since inflation ended, it follows immediately that the more inflation there is, the 
closer the density parameter is to unity at the present epoch. If the onset of inflation is 
determined by the initial conditions at the Planck epoch, the scenario therefore predicts 
that the current value of the density parameter measured on the horizon scale should be 

Ro = 1% 10-5, (3.1) 

where the error of 10e5 arises from the quantum effects that are responsible for the gen- 
eration of the primordial power spectrum and is estimated from the observed quadrupole 
anisotropy in the CMBR. (Models h w ere Ro differs significantly from unity can be con- 
structed, but they require very special, and rather unnatural, initial conditions [19]. Con- 
sequently they do not satisfy our rather subjective definition of basic inflation). 

This prediction provides one of the main observational tests of the inflationary scenario. 
When combined with the constraints from nucleosynthesis, which imply that the baryonic 
matter can contribute at most 10% of the critical density, it leads to the prediction that 
at least 90% of the observable universe must consist of non-baryonic dark matter. The 
discovery of dark matter would provide strong support for inflation, although of course 
failure to detect such particles would not disprove the scenario! 

Prediction III: For completeness we mention that there should not be a significant 
abundance of monopoles left over from soxne early phase transition, because their energy 
density is exponentially redshifted by the inflationary expansion. The question of whether 
cosmic strings can form after inflation is as yet unresolved, although they can do so if the 
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reheating temperature is sufficiently high. However we shall not pursue these questions 
further here. 

Predition IV: It is clear that the energy parameter determines the ratio of the ampli- 
tudes of the scalar and tensor modes. For scales that reenter after decoupling this ratio is 
given by 

AG -= 
AS 

$$ = J;, (3.2) 

We see immediately that the requirement that inflation occurs, i.e. c < 1, implies that 

AG < As. (3.3) 

An observation violating this condition at any scale would immediately rule out the general 
class of models we are considering. 

Prediction V: Substitution of Eq. (3.2) into the definition of the tensor spectral index 
leads to the relationshiD 

+A) = A;(X) 
A;(X) -A&(X)’ 

This expression is valid for an arbitrary inflationary potential and illustrates a fundamental 
connection between the forms of the scalar and tensor fluctuation spectra. At each scale X it 
relates the amplitudes of the two spectra to the tilt of the tensor spectrum. In principle these 
three quantities can be determined observationally and potentially this equation provides a 
powerful discriminator of the inflationary hypothesis. We shall therefore refer to it as the 
consistency equation [9]. 

We see from Eq. (3.4) that 6 < 1 also leads to the prediction that 

nG 10. (3.5) 

This implies that the amplitude of the primordial gravitational wave spectrum must always 
increase with increasing wavelength. This follows because the amplitude of the tensor 
fluctuations when they reenter varies in direct proportion to the expansion rate of the 
universe when that scale first crossed the Hubble radius during inflation. However, if k = 0, 
Eq. (2.2) implies that H is always decreasing and, since the first scales to go superhorizon 
are the last to reenter, this implies nG > 0. 

Some comments are in order at this stage. The expressions (2.12) and (2.13) for the 
scalar and tensor fluctuations are only strictly valid to lowest-order in the energy and friction 
parameters. The same is true for the consistency equation. In other words we have assumed 
that the slow-roll condition is valid in deriving these equations and this goes against the 
spirit of reconstruction. This assumption is necessary because the fulI analytical expressions 
for the perturbation spectra are unknown at present. Improved expressions valid to first- 
order in 6 and q are 

As = -~~[1-(2C+l)~+c~] 

AG E & H P - CC + +I 2 
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where C = -2 + In2 + 7 N -0.73 is a numerical constant and 7 = 0.577 is the Euler 
constant [20]. However, for reasons of technical simplicity, we shall employ the lowest-order 
expressions in the remainder of this talk. 

We now proceed to develop the formalism that allows the functional form of the infla- 
tionary potential to be reconstructed from a knowledge of the primordial power spectra of 
scalar and tensor fluctuations. 

4 Recontruction of the Inflationary Potential from the Pri- 
mordial Power Spectra 

At this stage it is worth remarking that only a very small region of the inflationary poten- 
tial is available for reconstruction. Scales of cosmological interest span the narrow range 
lh-‘Mpc to 6000h-‘Mpc, where Ho = 1OOh km s-l Mpc -I is the current expansion rate 
of the universe. These scales correspond to galaxies through to the size of the current hori- 
zon. Such a range of scales first crossed the Hubble radius during In6000 x 9 e-foldings of 
accelerated expansion and this represents a very small part of the total inflationary era. 

We shall assume that the spectra As(X) and At(X) have been determined observation- 
ally,, at least over a small range of scales, by combining large-scale structure and CMBR 
experiments. The reconstruction of the inflationary potential now follows by parametriz- 
ing the full set of solutions in terms of the functional H[X(d)]. The expressions for the 
ampbtudes of the scalar and tensor fluctuations become 

40) = v5.2 gp*(X)I-gg 
AC(A) = -&H(X)? 

respectively. 
There exists a one-to-one correspondence between a given length scale X and the value of 

4 when that scale crossed the Hubble radius during inflation. The physical size of a scale at 
the present epoch is simply X(b) = If-‘(b)ao/a(+), where H(4) and a($) are determined at 
the epoch when the scale had physical size H-l($) (’ IX. when it crossed the Hubble radius 
during inflation). The value of a($) 1s related to the size of the scale factor at the end of 
inflation, a,, via the expression 

44) = =e =P[-N(~)L (4.9) 

where 

is the number of e-foldings of growth from a particular value of 4 to the end of inflation at 
4. (defined in general as the point where c reaches unity). This implies that 

A($) = expLN(b)] s 
H(4) Qe’ 

(4.11) 
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and differentiation of this equation with respect to the in&ton field yields 

(4.12) 

An expression for the potential, as parametrized by the scale X, follows by substituting 
Eq. (4.8) directly into the Hamilton-Jacobi equation (2.8): 

(4.13) 

Finally, we need to determine how X varies with 4. Integration of Eq. (4.12) yields the 
function 4 = 4(X) given by 

f+(X) = *$ JA $A;;;,yg). (4.14) 

An alternative form for 4(X) may be derived by substituting the consistency equation (3.4) 
into Eq. (4.14): 

,$=*J; *OdA’ As[A’GI 
n G Ag 

(4.15) 

Without loss of generality the arbitrary integration constant has been eliminated by per- 
forming a linear translation on the value of 4. This second expression proves particularly 
useful in the reconstruction process if the functional form of As as a function of AG is 
kllOWn. 

The functional form V(4) of the potential is deduced by inverting Eq. (4.14) and 
substituting into Eq. (4.13). Th e reconstruction equations are Eq. (4.13) and (4.14) 
along with the consistency equation (3.4). W e conclude that full reconstmction requires 
a knowledge of both the scalar and tensor perturbation spectra. However, recall that the 
tensor spectral index is just nc = 2dinAc/din X. If the tensor spectrum is known, this 
implies that one may employ the consistency equation to derive the scalars. Unfortunately 
the consistency equation is a first-order, ordinary differential equation, so the reverse is 
not true! If one only has a knowledge of the scalar spectrum (and from an observational 
point of view this is the most likely scenario), one must integrate the consistency equation 
to determine the tensors and this necessarily introduces an arbitrary constant into the 
tensor spectrum. The non-linear nature of the consistency equation implies that the scalar 
spectrum alone does not uniquely determine the tensor spectrum, and hence the functional 
form of the inflationary potential. 

As a corollary, an arbitrarily accurate determination of the scalar spectrum is insufficient 
to reconstruct the potential. A minimal knowledge of the primordial gravitational Lyme 
spectmm is required. Indeed the amplitude of the tensor spectrum at one scale is sufficient 
to determine the integration constant and lift the degeneracy. We shall discuss in Section 
6 some of the possible observational routes whereby the necessary information may be 
gathered. 
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5 Reconstruction from a Constant Scalar Spectral Index 

In this section we shall derive the general class of inflationary potentials that leads to a 
spectrum of scalar fluctuations with a constant spectral index. We assume a power law of 
the form 

As(X) o( ,ju-4/2 0: JJ”-‘)P, (5.1) 

This class of spectra is the simplest extension to the scale-invariant Harrison-Zel’dovich 
spectrum (n = 1) and at any rate it is likely that more complicated features in the spectrum 
will not be measureable observationally in the near future .l However, recent results already 
constrain power spectra of the form (5.1). The data from COBE suggests that (5.1) is 
consistent at the 1-u level if n lies in the range 0.6 to 1.6. These limits are independent 
of the dark matter components. If one includes clustering data and assumes a cold dark 
matter (CDM) model, the lower limit becomes n > 0.7 at 95% confidence if gravitational 
waves do not contribute significantly to the CMBR temperature anisotropy and n > 0.84 if 
they do [15]. 

The functional forms of H(#) that lead to such spectra may be derived by equating 
Eqs. (2.12) and (5.1), taking logarithms, and differentiating with respect to the scalar 
field to remove all undetermined constants [21]. The (InA)’ term may be rewritten after 
substitution of Eq. (4.12) and this leads to a second-order differential equation in H(6) 
[21]: 

2(5 - n,q - 2H” = -(n - l)n2H. 

The order of this equation may be reduced by using the identity 

2Hu = 4Hr)2 
dH (5.3) 

and we arrive at the non-linear, first-order differential equation 

(5.4) 

This admits the exact integral 

(HI)* = ?=2;H2 + CH5-“, 72 # 3, 

where C is an arbitrary integration constant. Eq. (5.5) h as a number of solutions depending 
on the signs of C and n. We have summarized them in Table 1 and the second integration 
constant has been absorbed into the value of the scalar field [22]. 

The inflationary potential follows by substituting these solutions into the Hamilton- 
Jacobi equation (2.8). Its form can not be determined uniquely unless the sign of the 
integration constant is specified. This constant determines the energy scale at which the 
fluctuations are tist formed during inflation and therefore such a specification requires 
knowledge of the gravitational wave spectrum on at least one scale. To investigate this 
further let us consider the n < 1 solutions in more detail when C is negative semi-definite. 

‘Throughout this talk the term ‘near future’ refers to any timescale contained within the next decade. 

9 



C/n C/n n<l n<l n=l n=l n>l n>l 

c<o c<o Asechm (~4) Asechm (~4) NS NS NS NS 

C=O exp(*mm#~) Const. NS C=O exp(*mm#~) Const. NS 

c>o c>o Acosechm(w~) Acosechm(w~) 
7&i 7&i 

hsec”(wfp) Asec”(w#) 

Table 1: The functional forms for H(O) that lead to a primordial power spectrum of scalar fluctuations 
with constant spectral index are tabulated for positive, vanishing or negative C and n - 1. The parameter 
A is a positivedefinite constant determined by C and ‘NS’ implies no real solution for H(d) exists in the 
given region. m = 2/(3 - n) and w2 = I(n - l)(n - 3)1x2/8 if n < 3. The form of the potential follows 
from the Hamilton-Jacobi equation (2.8). We we that the integration constant C must be specified for the 
potential to be uniquely determined. This can only be done at an observational level if one haF knowledge 
of the primordial gravitational wave spectrum on at least one scale of interest. 

Both the hyperbolic and exponential potentials lead to a constant spectral index n. 
What distinguishes the two solutions is the relative amplitude of the gravitational wave 
spectrum. This is determined by the ratio (3.2). Th e energy parameter in the two cases is 
given by 

(5.6) 

e= (s) 1-h (,/T+)]’ (5.7) 

for C = 0 and C < 0 respectively. In the latter case it can be shown that cosmological scales 
crossed the Hubble radius during inflation when 1~41 was very small, thereby implying that 
the contribution of the gravitational waves is exponentially suppressed in this model [18]. 

It is worth remarking that the solutions presented in Table 1 are general and therefore 
valid for all values of the scalar field. This implies that one can always expand the potentials 
as a Taylor series about some specific value 40 and then perform a linear translation on 
the field [23]. It is interesting to note that the expansions for the {n < l,C < 0) and 
{n > 1, C > 0) are both given by 

This implies that an almost constant spectral index will always be obtained if H(4) has 
an expansion of the form (5.8) to lowest order in 4. Such an expansion is valid because 
all large-scale structure observations correspond to a very narrow region of the inflationary 
potential and since the field must be rolling down its potential at a sufficiently slow rate for 
inflation to proceed in the first place, the relative change in the position of the field over 
the 9 e-foldings associated with large-scale structure observations is expected to be tiny. 
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Scalar 11 G raw a Len ‘t t’ al Waves 1 Gravitational Waves 
Spectrum Important Negligible 

II I 

Small c large e small 
Tilt 2c t=2 7j 1111 mmll 

Significant c large c small 
Tilt 1111 we Id b3e 

Table 2 - Illustrating the connection between tilt and the gravitational wave production in terms of 
the magnitudes of the energy and friction parameters. 

Potentials of this form arise in a number of particle physics models. For n < 1 the poten- 
tial can be interpreted physically as a bulk viscous stress acting on the energy-momentum 
tensor of a perfect barotropic fluid [18]. The self-interaction potentials of the pseudo- 
Nambu-Goldstone bosom also have the form (5.8) in the smalI angle approximation [24]. 
Furthermore, the recently proposed hybrid inflationary scenario is driven by potentials with 
an expansion given by (5.8) and predicts n > 1 [25]. 

Finally we summarize the relationship between the tilt of the scalar power spectrum 
and the gravitational wave contribution in Table 2 [26]. The important quantities are the 
energy and friction parameters. These are described as ‘large’ when they are significantly 
larger than zero but still less than unity and ‘small’ when they are very close to zero. 

6 Can the Primordial Gravitational Waves be Observed? 

In this section we shall assess the current possibilities for reconstructing a part of the infla- 
tionary potential. It is clear that at some level one requires knowledge of the gravitational 
wave spectrum and there are three possible methods by which such a spectrum may be 
determined. 

1. Direct Detection: The most obvious method is via direct detection. For inflation 
driven by exponential potentials the spectral indices satisfy 71~ = 1 - n and are uniquely 
determined by the energy parameter via Eq. (5.6). II ence, increasing the tilt increases the 
contribution of the gravitational waves to the CMBR anisotropy on large angular scales. 
However, tilting the spectrum reduces the amplitude on the smaller scales relevant for direct 
detection. The predicted amplitude of the waves on scales relevant to the most sensitive 
direct probes of gravity waves, such as the Laser Interferometer Gravity-wave Observatories 
(LIGO), are too low to be detected [43]. Consequently this route does not appear promising. 

2. Pohization of the CMBR: Polarization of the CMBR can arise if the microwave 
radiation is scattered by free electrons due to Thomson scattering in the presence of a grav- 
itational wave. In principle measurements of the CMBR polarization can provide valuable 
information regarding the contribution of gravitational waves to large-scale temperature 
anisotropies [27]. Recent numerical calculations suggest, however, that such an effect is 
very difficult to detect in practice, since the combined polarization of the tensor plus scalar 
is typically less than 1%. Therefore this approach does not seem particularly promising 
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either. 
3. Comparison of small and large scale CMBR anisotropies: The most promising 

method for determining the gravitational waves at a particular scale is by comparing the 
large and small angle anisotropies (for a discussion of these issues see [28]). The surface of 
last scattering is located at a redshift ZLSS x 1100 and the angle subtended by the hori- 
zon scale at that redshift is approximately 0~s~ EZ (1 + Tess)-‘/’ z 2’. This implies that 
anisotropy measurements on angular scales above 0 x 2O directly determine the primeval 
form of the fluctuations. On smaller angular scales the fluctuations have reentered the 
horizon. After reentry the gravitational waves behave as relativistic matter and their en- 
ergy density redshifts as the fourth power of the scale factor. This implies that only scalar 
modes affect the CMBR anisotropy below x 2’. If the fluctuations are statistically indepen- 
dent and Gaussian-distributed, the scalar and tensor fluctuations on scales above 2O add in 
quadrature. Consequently a comparison of large and small scale CMBR ezpetiments nay 
yield information regarding the influence of the primordial gravitational waves. 

Let US investigate this further. The CMBR anisotropies can be expanded into spherical 
harmonics [29] 

$X> e, 4) = 5 5 wm(x) y;ce> 4), 
I=2 m=-, 

(6.1) 

where x denotes the observer’s position and the coefficients al,,,(x) are Gaussian random 
variables with mean and variance determined uniquely by the harmonic I: 

hn(x)) = 0 ; (lmn(X)12) = q. 

A given inflationary model predicts values for the averaged quantities 

(Q:) = &I+ 1P:, 

(6.2) 

(6.3) 

where the average is taken over allobserver positions, but the observed multipoles measured 
from a single point in space are given by 

Q; = $ 2 l%n1*. 
m=-I 

(6.4) 

For sufficiently small angles on the CMBR sky the Ith harmonic of the expansion is 
given approximately by 1 Y (200”/0). Hence for harmonics smaller than 1 Y 20 the dominant 
contribution to the CMBR arises solely from the Sachs-Wolfe effect when photons are either 
red or blue shifted as they climb out of, or fall into, gravitational potential wells [30]. If one 
assumes a constant spectral index n < 3, the variances of the coefficients in the harmonic 
expansion of the scalar fluctuations are related by 

.qq = c2[s]r[l + (n - 1)Pl JA(9 - n)Pl 
r[I + (5 - g/21 q(3 + n)/21’ 

(6.5) 

Hence, in models where gravitational waves are not significant, measurements of the lower- 
order harmonics provide a fit to the spectral index. 
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For models where the tensor fluctuations are important, however, the anisotropies from 
such modes are 

E:[T] = 144r5G(21 + 1) (6.6) 

J 
k 

II(k) c Jl+l/z(k - Y) +(Y) 

km/m dy (k -y)5/2 y3/2 ’ (‘3.7) 

q~ and ~0 denote conformal time at recombination and at the present era and C(n) = 
P(k)k’-“/4n, where P(k) is the power spectrum [31]. 

A very useful relationship follows after numerical integration of this expression [32]. It 
can be shown that the ratio 

c:(sl 2 A; _ 25 

E?[rrl =gqg-2 

is independent of 1 if n is approximately constant and close to unity. For potentials driven 
by %n exponential potential comparison with Eq. (5.6) therefore implies that 

E:ISl 
c:[TJ= 

ms1 
Et - Ep] (6.9) 

where we assume that the expectations add in quadrature, i.e. C: = Cy[,Sl+ E$‘l (32,331. 
This is a remarkable result and suggests that inflation driven by exponential potentials can 
be observationally tested if the spectral index and ratio of the scalars to tensors on large 
angular scales can be determined. Moreover, deviations from this relationship will tell us 
how far away we are from the exponential potential model. 

Since the large-scale Sachs-Wolfe effect is potentially due to both scalar and tensor 
modes, we must consider smaller scales (0 < 2O), where the gravitational waves are unim- 
portant, to determine separate normalizations for these two components. However, because 
these scales were sub-horizon at the surface of last scattering, complex physical processes 
do not allow simple expressions for the anisotropies to be written down. On the other 
hand a ‘Doppler peak’ is expected to occur at 1 = lop z 120 - 200 due to effects such 
as Thomsom scattering off moving electrons [34]. In principle, therefore, a measurement 
of the height of this peak gives the scalars at 1~s and comparison with the low multipole 
anisotropies may allow the tenson to be separated out. If this can be done, it would imply 
that the COBE satellite is indeed the first experiment to make a direct measurement of the 
primordial spectrum of gravity waves! 

The dark matter in the universe affects the small-scale CMBR anisotropy via a transfer 
function, although it seems that this is not so important for degree-scale experiments. 
However, the possible effects of reionization must also be considered. To make progress it 
seems that one must consider a hypersurface in the full parameter space of observational 
cosmology and reconstruct within the context of this plane. We shall therefore conclude 
this section by summarizing what we feel to be the most important parameters that need 
to be determined, along with some ‘favorite’ values. 

1. Ro: Inflation predicts that Ro = 1 and observational support for this prediction 
comes from the QDOT redshift survey of the Infrared Astronomy Satellite (IRAS) 
Their results suggest that Rf%;’ = 0.86 f 0.15, where br is the IRAS bias parameter. 

[35]. 
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2. Age of the universe: If there is no cosmological constant, the age of the Ro = 
1 universe is to = 6.52h-‘Gyr. Redshift surveys suggest that the current value of the 
expansion rate is 0.4 5 h 5 1.0, but if h > 0.6, the age of the universe is smaller than the 
oldest globular clusters in the galaxy, &,, = (13 - 15) f 3Gyr. Therefore low values of h are 
favored. The Sunyaev-Zel’dovich effect distorts the CMBR when the electromagnetic waves 
interact with the hot gas in galaxy clusters and a value of the Hubble constant can then 
be determined by constraining the size of the cluster along the line of sight. Birkinshaw 
et al. [36] find h = (0.4 - 0.5) zk 0.12 whilst Jones et al. [37] find 0.2 < h < 0.75. These 
observations favour the lower region. 

9. Baryonic dark matter: Limits on the percentage of baryonic dark matter in the 
universe deduced from observing the primordial abundances of the light elements are [38] 

C&h* = 0.0125 f 0.0025. (6.10) 

Saturating the lower bound on h yields the upper limit RB < 0.09 and one must therefore 
choose some form of non-baryonic dark matter if Ro = 1. 

4. Cosmological Constant: A number of observations suggest that the cosmological 
constant may be a candidate for this dark matter [39,40]. We note however that gravitational 
lensing effects imply that 0~ 5 0.6 and a best fit to clustering results implies 0, 5 1 - 
(0.2 zk O.l)h-‘, at least for n < 1 [41]. 

5. &ionization history: In the standard picture recombination occurs at a redshift 
t c: 1300 and the ionization fraction X, is given by 1 + z~ss x (0.03XeQ,h)-2/3 if no = 1. 
Thus the surface of last scattering could have formed as late as z~ss x 76 if X, = 1, h = 0.4 
and we employ the upper limit for Rg. Such effects alter the position of the Doppler peak 
and this implies that some assumptions about the ionization history of the universe must 
be made. 

It seems reasonable to assume that no reionization occurred and to then specify 00 = 1, 
Rs = 0.1, SPA = 0 and h = 0.5 as a first approximation. The free parameters are then 
the spectral indices of the scalar and tensor fluctuations, the relative amplitude of the 
fluctuations on the quadrupole scale and the form of the dark matter (or equivalently the 
transfer function). 

The current state of play with the observations suggests that the most realistic way to 
reconstruct is within the context of a specific dark matter model and a constant spectral 
index. There are a number of active and proposed dark matter searches in operation and 
one might hope to gain some insight into the dark matter in the near future. The most 
promising method of determining the primordial power spectrum is through measurements 
of the peculiar velocity field. The development of the POTENT method, in particular, is 
potentially very useful because it assumes that the velocity is simply given by the divergence 
of a scalar [42]. All matter interacts via gravity, so peculiar velocities meawe the mass 
spectrum and not the galaxy spectrum. In the linear regime 

P,(k) = & (F) 2 2 
;;EZ A;(W*tk)> (6.11) 

where the spectrum of the modulus of the velocity VJ is defined as P, = V(k3/2?rz)(16v/2), the 
Fourier components b(k) are defmed over the physical volume V and T(k) represents the 
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transfer function. This equation shows how the spectrum is related directly to the amplitude 
of the scalar fluctuations when they reenter the Hubble radius. In principle, therefore, the 
scalar spectral index can be reconstructed. 

The idea then is that the height of the Doppler peak at I a IDP can be determined once 
the spectral index and transfer function of the dark matter are known and this leads to a 
predicted value for what should be observed. Eq. (6.9) implies that 

MS1 EfDS PI 
m = qJ~ 

(6.12) 

and this expression is independent of the spectral index. In principle this gives us a measure- 
ment of the amplitude of the gravitational waves at the scale IDP and should be sufficient 
to lift the degeneracy intrinsic to the reconstruction procedure. Once the degeneracy has 
been lifted this will allow the integration constant to be determined. 

7 Conclusion 

In this talk we have summarized the general observational predictions of the simplest class 
of basic inllationary models. The formalism that allows one to reconstruct the functional 
form of the inflationary potential from the scalar and tensor perturbation spectra was then 
discussed. Full reconstruction of the potential does not appear viable within the foreseeable 
future. However, it is quite likely that an accurate determination of the spectral index will 
be made within the next few years. We presented the full class of general solutions that 
lead to scalar fluctuations with a constant spectral index and it was found that the precise 
form of the potential is rather sensitive to the gravitational wave contribution to large angle 
CMBR anisotropies. If n > 1, the potential is convex and, if its functional form over the 
large-scale structure range is extrapolated to the origin, it has a global minimum located 
at V # 0. If n < 1 and the gravitational wave contribution is negligible, the field is located 
within the vicinity of a local maximum instead. On the other hand, if n < 1 and the tensor 
spectrum is important, the potential takes an exponential form. 

These general solutions can be expanded as a Taylor series about some value of 4, which 
typically is taken to be the value of the inflaton field when the scale corresponding to the 
quadrupole 6rst crossed the Hubble radius during inflation. This is consistent because 
all large-scale structure observations correspond to only a few e-foldings of inflationary 
expansion and, since the scalar field is moving slowly during inflation, the relative change 
in the value of 4 in this range is expected to be very small. This implies that any potential 
that has a Taylor expansion equivalent to these general solutions to lowest order in 4 will 
also produce a scalar spectrum with constant n. 

We therefore conclude that partial reconstruction of the inflationary potential, within the 
approximation that the spectral index is constant, is a realistic possibility. We have shown 
that a determination of the spectral index, together with knowledge of the gravitational wave 
amplitude on one scale, will be sufficient to determine whether the potential is convex or 
concave over the narrow range of scales associated with large-scale structure. Although this 
is a rather limited piece of information, it would nevertheless correspond to an observation 
of physics at the GUT scale. 
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